UNIDAD 4: REPRESENTACIÓN GRÁFICA DE FUNCIONES

CONTENIDO

1.	ASÍNTOTAS DE UNA FUNCIÓN	2
) Asíntotas verticales	
) Asíntotas horizontales	
c)) Asíntotas oblicuas	6
2.	REPRESENTACIÓN GRÁFICA DE FUNCIONES	9

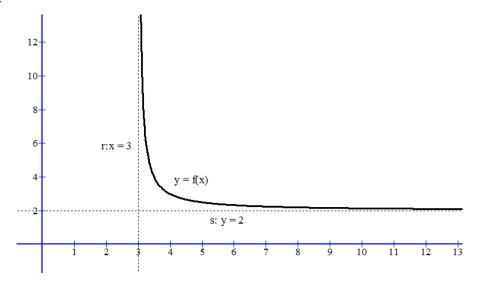
1. ASÍNTOTAS DE UNA FUNCIÓN

Las asíntotas son rectas a las cuales la función se va aproximando indefinidamente, cuando por lo menos una de las variables (x o y) tienden al infinito.

Una definición más formal es:

<u>Definición</u>: Si un punto (x, y) se desplaza continuamente por una función y = f(x) de tal forma que, por lo menos, una de sus coordenadas tienda al infinito, mientras que la distancia entre ese punto y una recta determinada tiende a cero, esta recta recibe el nombre de asíntota de la función.

Veamos una gráfica:



Como vemos en esta gráfica la recta r se aproxima todo lo que queramos a la función (aunque no llega a cortarla o tocarla). A r se le llama asíntota vertical de f en x=3. Vemos que $\lim_{x\to 3^+} f(x) = +\infty$

De manera análoga, vemos que tiene una asíntota horizontal en $+\infty$, que es la recta $s\equiv y=2$. Se observa que $\lim_{x\to +\infty} f(x)=2$

Las asíntotas se clasifican en 3 tipos:

a) Asíntotas verticales

Son paralelas al eje OY. Son de la forma $r \equiv x = a$, donde a es un nº que cumple que el $\lim_{x \to a} f(x)$ es algún tipo de infinito: También vale cuando tendemos a a por la izquierda o por la derecha.

Estos números a suelen ser los puntos extremos de los intervalos del dominio.

Ejemplo 1: Calcula las AV (asíntotas verticales) de la función $f(x) = \frac{x}{x^2 - 1}$

Primero el dominio de la función: $Dom(f) = R - \{1, -1\}$. Las posibles asíntotas verticales son x = 1 ó x = -1

Veamos que pasa con la función alrededor de esos puntos, calculando los límites:

En $\underline{\mathbf{x}} = \mathbf{1}$, hacemos los laterales pues aparece 0 en el denominador y nos interesa conocer el signo de la aproximación a 0.

 $\lim_{x\to 1^+} \frac{x}{x^2-1} = \frac{1}{0^+} = +\infty \to \text{Al acercarnos por la derecha al 1, la función tiende a} + \infty \text{. Ya tenemos que la función tiene una asíntota vertical por la derecha en } x=1.$

 $\lim_{x\to 1^-}\frac{x}{x^2-1}=\frac{1}{0^-}=-\infty \Rightarrow \text{Al acercarnos por la izquierda al 1, la función tiende a }-\infty. \text{ Ya tenemos que la función tiene una asíntota vertical por la izquierda en } x=1.$

De manera general, decimos que la recta $r \equiv x = 1$ es una asíntota vertical a $+\infty$ por la derecha y a $-\infty$ por la izquierda.

En $\underline{\mathbf{x}} = -\mathbf{1}$, hacemos los laterales pues aparece 0 en el denominador y nos interesa conocer el signo de la aproximación a 0.

 $\lim_{x\to -1^+}\frac{x}{x^2-1}=\frac{-1}{0^-}=+\infty \Rightarrow \text{Al acercarnos por la derecha al -1, la función tiende a }+\infty \text{ . Ya tenemos que la función tiene una asíntota vertical por la derecha en }x=-1$

 $\lim_{x\to -1^-}\frac{x}{x^2-1}=\frac{-1}{0^+}=-\infty \to \text{Al acercarnos por la izquierda al 1, la función tiende a }-\infty. \text{ Ya tenemos que la función tiene una asíntota vertical por la izquierda en }x=-1.$

De manera general, decimos que la recta $r \equiv x = -1$ es una asíntota vertical a $+\infty$ por la derecha y a $-\infty$ por la izquierda.

Veamos gráficamente la información que nos ha aportado este estudio. Nos da una buena idea de la gráfica de la función

En $x=1$	En $x = -1$	Las dos a la vez	
8- 7- 6- 5- 4- $\mathbf{y} = \mathbf{f}(\mathbf{x})$ 3- $\mathbf{r} : \mathbf{x} = 1$ -1234567	$\mathbf{r} : \mathbf{x} = -1$ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ $\mathbf{f}(\mathbf{x})$ $\mathbf{f}(\mathbf{x})$ $\mathbf{f}(\mathbf{x})$ $\mathbf{f}(\mathbf{x})$ $\mathbf{f}(\mathbf{x})$	$\mathbf{r} : \mathbf{x} = -1$ $\mathbf{r} : \mathbf{x} = 1$	

Ejemplo 2: Calcula las AV (asíntotas verticales) de la función $f(x) = \frac{x}{x^2 + 1}$

En este caso, el dominio de la función Dom(f) = R, con lo cual no tiene A.V. y no hay que hacer nada más

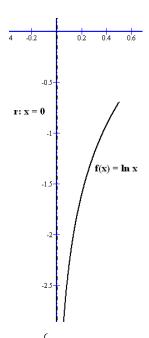
Ejemplo 3: Calcula las asíntotas verticales de $f(x) = \ln x$

Como sabemos, $Dom(\ln) = (0,+\infty)$. Por tanto, puede presentar una A.V. en x = 0. Veamos los límites laterales:

$$\lim_{x\to 0^+} \ln x = -\infty$$
 , como sabemos, luego $r\equiv x=0$ es una A.V. por la derecha a $-\infty$

El límite lateral izquierdo en 0 no se puede calcular pues por ahí la función \ln no está definida.

Gráficamente tenemos algo así:



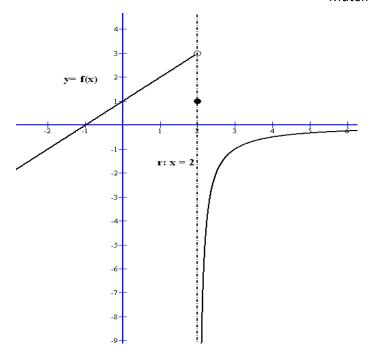
Ejemplo 4: Calcular las asíntotas verticales de $f(x) = \begin{cases} x+1 & si & x < 2 \\ 1 & sis & x = 2 \\ \frac{-1}{x-2} & si & x > 2 \end{cases}$

En este caso, también tenemos que Dom(f) = R, pero al ser definidas por partes, puede que tenga A.V. en los puntos que cambia de definición o en los puntos donde la función no este definida. Aquí sólo se plantea en x = 2, y vamos a calcular los límites laterales.

$$\lim_{x\to 2^+} \frac{-1}{x-2} = \frac{-1}{0^+} = -\infty$$
. Por la derecha hay A.V., que es $r \equiv x = 2$, hacia $-\infty$ por la derecha.

$$\lim_{x\to 2^-} x+1=3 \to NO$$
 hay A.V. por la izquierda

Gráficamente esta función es así:



b) Asíntotas horizontales

Son rectas paralelas al eje OX, o sea, de la forma $r \equiv y = a \, \mathrm{r}$: y = a. Ese nº a se calcula mediante los límites en el $+\infty$ y en el $-\infty$. Es decir, calcular $\lim_{x \to +\infty} f(x)$ y $\lim_{x \to -\infty} f(x)$

Como máximo una función sólo puede tener dos A.H.

Veamos ejemplos:

Ejemplo 5: Calcular las asíntotas horizontales de la función $f(x) = \frac{-4x^2 - 1}{2x^2 + x}$

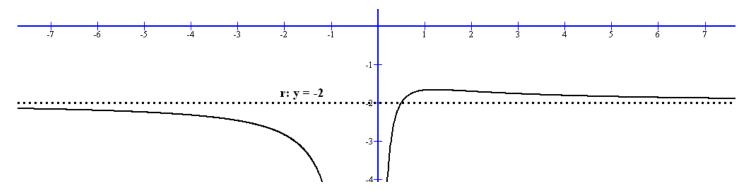
En esta función su dominio es $Dom(f) = R - \left\{0, -\frac{1}{2}\right\}$, que no influye para nada pues vamos a hacer límites en el infinito

 $\lim_{x\to +\infty} \frac{-4x^2-1}{2x^2+x} = \frac{-4}{2} = -2 \Rightarrow \text{Como el límite existe, tenemos que la recta} \quad r \equiv y = -2 \text{ es una asíntota horizontal en } +\infty$

$$\lim_{x\to -\infty} \frac{-4x^2-1}{2x^2+x} = \frac{-4}{2} = -2 \Rightarrow \text{Como el límite existe, tenemos que la recta } r \equiv y = -2 \text{ es una asíntota horizontal en } -\infty.$$

Como es la misma, podemos decir que la recta $r \equiv y = -2$ es la asíntota horizontal

Gráficamente,



Ejemplo 6: Calcular las asíntotas horizontales de la función $f(x) = e^{-5x}$

El dominio es todo R. Vamos calcular los límites en infinito:

$$\lim_{x \to +\infty} e^{-5x} = 0 \Rightarrow \text{La recta } r \equiv y = 0 \text{ es A.H. en } +\infty$$

 $\lim_{x\to -\infty} e^{-5x} = +\infty \rightarrow \text{No tiene A.H. en } -\infty \text{ Observamos que tiene por un lado y por otro no}$

Ejemplo 7: Calcular las asíntotas horizontales de la función $f(x) = \frac{x^3 - x + 1}{x^2 - 5x}$

Os dejo a vosotros comprobar que no tiene asíntotas horizontales.

c) Asíntotas oblicuas

Son aquellas que son inclinadas (pendiente distinta de 0). Serán rectas de la forma $r \equiv y = mx + n$

Hay que hacer límites también en $+\infty$ y en $-\infty$ para calcular los valores de m y n y son los siguientes:

En +∞	En −∞
$m = \lim_{x \to +\infty} \frac{f(x)}{x}$	$m = \lim_{x \to -\infty} \frac{f(x)}{x}$
$n = \lim_{x \to +\infty} [f(x) - mx]$	$n = \lim_{x \to -\infty} [f(x) - mx]$

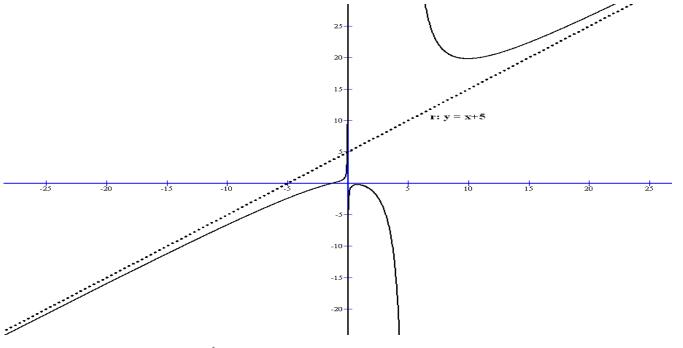
<u>Propiedad</u>: Si una función y = f(x) tiene asíntotas horizontales no puede tener asíntotas oblicuas en el correspondiente infinito.

Ejemplo 8: Calcular las asíntotas oblicuas de la función $f(x) = \frac{x^3 - x + 1}{x^2 - 5x}$

Tenemos que $Dom(f) = R - \{0,5\}$, que no nos influye en el cálculo de las A. O.

En +∞	En −∞ (todo es análogo a + ∞)	
$m = \lim_{x \to +\infty} \frac{\frac{x^3 - x + 1}{x^2 - 5x}}{x} = \lim_{x \to +\infty} \frac{x^3 - x + 1}{x \cdot (x^2 - 5x)} = \lim_{x \to +\infty} \frac{x^3 - x + 1}{x^3 - 5x^2} = 1$	$m = \lim_{x \to -\infty} \frac{f(x)}{x} = 1$ Hacedlo vosotros	
$n = \lim_{x \to +\infty} \left[\frac{x^3 - x + 1}{x^2 - 5x} - x \right] = \lim_{x \to +\infty} \left[\frac{x^3 - x + 1 - (x^3 - 5x^2)}{x^2 - 5x} \right] =$	$n = \lim_{x \to -\infty} [f(x) - mx]_{=5}$	
$= \lim_{x \to +\infty} \left[\frac{5x^2 - x + 1}{x^2 - 5x} \right] = 5$	Hacedlo vosotros	
La A.O. en +∞ es:	La A.O. en −∞es:	
r: y = x + 5	r: y = x + 5	

Su gráfica es así, para que hagáis una idea de lo obtenido:



Ejemplo 9: Sea la función $f(x) = \begin{cases} \frac{-x^2+1}{x+3} & si & x < 0 \\ \frac{3x-1}{2x-3} & si & x > 0 \end{cases}$. Calcular sus A. Oblicuas

El dominio de esta función es : $Dom(f) = R - \left\{0, -3, \frac{3}{2}\right\}$ En los reales que no son del dominio es donde puede presentar asíntotas verticales, que esas no las vamos a estudiar..

$$En + \infty$$

$$m = \lim_{x \to +\infty} \frac{\frac{3x-1}{2x-3}}{x} = \lim_{x \to +\infty} \frac{3x-1}{x \cdot (2x-3)} = \lim_{x \to +\infty} \frac{3x-1}{2x^2-3x} = 0 \Rightarrow \text{La pendiente es 0, luego no puede ser una}$$

asíntota oblicua, en todo caso será horizontal. Veamos si tiene horizontal: $\lim_{x\to +\infty} \frac{3x-1}{2x-3} = \frac{3}{2} \Rightarrow r \equiv y = \frac{3}{2}$ es asíntota

horizontal en $+\infty$ (esto no era necesario, pues no lo pedía el problema)

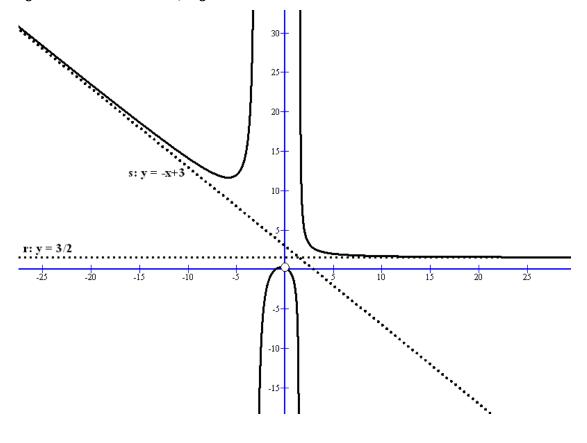
$$_{En}$$
 $-\infty$

$$m = \lim_{x \to -\infty} \frac{\frac{-x^2 + 1}{x + 3}}{x} = \lim_{x \to -\infty} \frac{-x^2 + 1}{x \cdot (x + 3)} = \lim_{x \to -\infty} \frac{-x^2 + 1}{x^2 + 3x} = -1$$

$$n = \lim_{x \to -\infty} \left[\frac{-x^2 + 1}{x + 3} - (-x) \right] = \lim_{x \to -\infty} \left[\frac{-x^2 + 1 + x^2 + 3x}{x + 3} \right] = \lim_{x \to -\infty} \left[\frac{3x + 1}{x + 3} \right] = 3$$

La recta $s \equiv y = -x + 3$ es A. Oblicua en $-\infty$

Para que veáis gráficamente lo calculado, la gráfica de la función con sus asíntotas es:



2. REPRESENTACIÓN GRÁFICA DE FUNCIONES

Vamos a intentar con los conocimientos que tenemos representar de forma aproximada funciones y básicamente nos vamos a apoyar en el estudio de: dominio, simetrías, periodicidad, cortes con los ejes, asíntotas, intervalos de crecimiento y de decrecimiento, extremos locales, intervalos de concavidad (f''(x)>0) y de convexidad (f''(x)<0), puntos de inflexión y una tabla de valores para afinar.

Vamos a hacerlo mediante ejemplos:

Ejemplo 10: Representar gráficamente la función $y = x^3 - x^2 - 8x + 12$

<u>Dominio</u>: Dom(y) = R por ser polinómica.

Simetrías:
$$y(-x) = (-x)^3 - (-x)^2 - 8(-x) + 12 = -x^3 - x^2 + 8x + 12 \neq \begin{cases} y(x) \\ -y(x) \end{cases}$$
. Luego no presenta simetría

Periodicidad: Las funciones polinómicas no son periódicas.

Cortes con los ejes:

Eje de abscisa (eje OX): Resolvemos el sistema:
$$\begin{cases} y = x^3 - x^2 - 8x + 12 \\ y = 0 \end{cases} \Rightarrow x^3 - x^2 - 8x + 12 = 0 \text{ Resolvemos}$$

por Ruffini y nos queda:
$$(x-2)^2 \cdot (x+3) = 0 \Rightarrow \begin{cases} x=2 \\ x=-3 \end{cases}$$
. Por tanto, los puntos de corte son: $(2,0)$ y $(-3,0)$

Eje de abscisa (eje OX): Resolvemos el sistema:
$$\begin{cases} y = x^3 - x^2 - 8x + 12 \\ y = 0 \end{cases} \Rightarrow x^3 - x^2 - 8x + 12 = 0 \text{ Resolvemos}$$
 por Ruffini y nos queda: $(x-2)^2 \cdot (x+3) = 0 \Rightarrow \begin{cases} x = 2 \\ x = -3 \end{cases}$. Por tanto, los puntos de corte son: $(2,0)$ y $(-3,0)$ Eje de ordenadas (eje OY): Resolvemos el sistema:
$$\begin{cases} y = x^3 - x^2 - 8x + 12 \\ x = 0 \end{cases} \Rightarrow y = 12 \text{ Punto de corte}$$
 $(0,12)$.

Asíntotas:

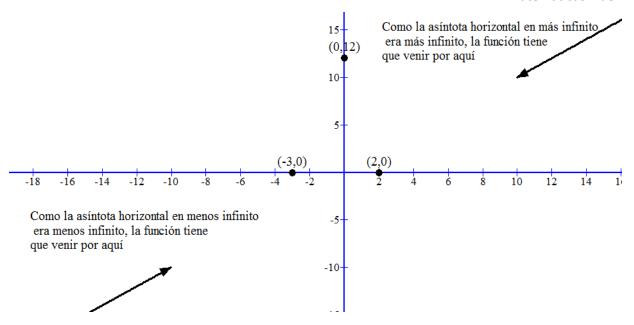
Asín. verticales: No tiene pues su dominio es todo R y es continua

Asín. Horizontales: En
$$+\infty$$
, calculamos $\lim_{x \to \infty} (x^3 - x^2 - 8x + 12) = +\infty$, no tiene

Asín. Horizontales: En $+\infty$, calculamos $\lim_{x\to +\infty} (x^3-x^2-8x+12) = +\infty$, no tiene En $-\infty$, calculamos $\lim_{x\to -\infty} (x^3-x^2-8x+12) = -\infty$, no tiene. Nos aportan información de por dónde va el dibujo al irnos para infinito.

Asín. Oblicuas: En
$$+\infty$$
, calculamos $\lim_{x\to +\infty} \frac{x^3-x^2-8x+12}{x} = +\infty$, no tiene. En $-\infty$, ocurre igual.

Con los datos ya calculados podemos intuir algo del dibujo:



Intervalos de crecimiento y decrecimiento (monotonía):

Derivamos la función
$$y = x^3 - x^2 - 8x + 12 \Rightarrow y' = 3x^2 - 2x - 8$$
. Igualamos a 0: $3x^2 - 2x - 8 = 0 \Rightarrow \begin{cases} x = 2 \\ x = \frac{-4}{3} \end{cases}$

Hacemos la tabla de signos:

	$\left(-\infty, \frac{-4}{3}\right)$	$\left(\frac{-4}{3},2\right)$	(2,+∞)	
$y' = 3x^2 - 2x - 8$	+	-	+	
	Creciente	Decreciente	Creciente	

Extremos locales:

Con el estudio de la monotonía ya obtenemos los extremos locales sin tener que aplicar el criterio de la 2ª derivada.

En
$$x = \frac{-4}{3}$$
, tiene un máximo relativo. El punto en concreto es $\left(\frac{-4}{3}, \frac{500}{27}\right)$

En x = 2, la función tiene un mínimo relativo. El punto en concreto es (2,0)

Intervalos de concavidad (curvatura):

Hacemos la 2ª derivada: $y'=3x^2-2x-8 \rightarrow y''=6x-2$ Igualamos a 0: $6x-2=0 \rightarrow x=\frac{1}{3}$

Hacemos la tabla de signos correspondiente:

riacemes la tabla de signes correspondientes.				
	$\left(-\infty,\frac{1}{3}\right)$	$\left(\frac{1}{3}, +\infty\right)$		
y'' = 6x - 2	-	+		
	Cóncava	Convexa \cup		

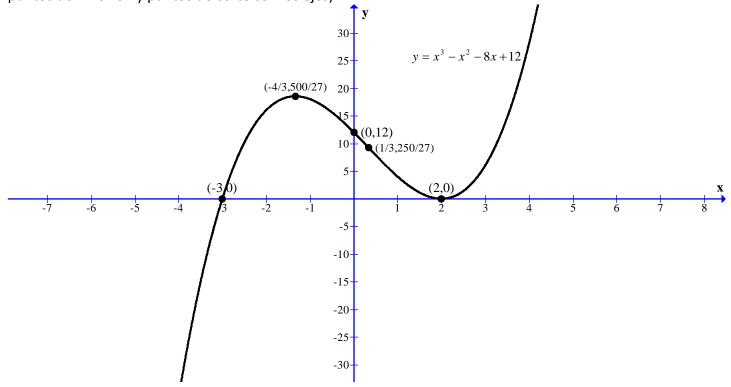
Puntos de inflexión:

Por lo visto en la curvatura, en $x = \frac{1}{3}$ la función tiene un punto de inflexión cóncavo-convexo. El punto en concreto con sus coordenadas es $\left(\frac{1}{3}, \frac{250}{27}\right)$

Pequeña tabla de valores:

Χ	Υ
-2	16
-1	18
1	4
3	6
4	28

Con lo cual ya podemos hacer un esbozo bastante curioso de la función: (sólo hemos puesto los extremos, puntos de inflexión y puntos de corte con los ejes)



Ejemplo 11: Representar gráficamente la función $f(x) = \sqrt{9-x^2}$

<u>Dominio</u>: Por ser irracional de índice par tenemos que hacer una tabla de signos para saber dónde el radicando es positivo o 0. Veamos dónde se anula el radicando: $9-x^2=0 \Rightarrow \begin{cases} x=3\\ x=-3 \end{cases}$

Tabla de signos:

	$(-\infty, -3)$	(-3,3)	(3,+∞)	
$9-x^2$ -		+	-	
No son del dominio		Son del dominio	No son del dominio	

Por último vemos que ocurre en $\begin{cases} x=3 \\ x=-3 \end{cases} \Rightarrow \begin{cases} f(3) = \sqrt{9-3^2} = 0 \\ f(-3) = \sqrt{9-(-3)^2} = 0 \end{cases}$ que tienen sentido y además hemos calculado

dos puntos por dónde pasa la función (3,0) y (-3,0) que son puntos de corte con el eje OX.

En definitiva, Dom(f) = [-3,3]

Simetrías: $f(-x) = \sqrt{9 - (-x)^2} = \sqrt{9 - x^2} = f(x)$. Luego presenta simetría par. Es simétrica respecto al eje OY Periodicidad: Obviamente no es periódica

Cortes con los ejes:

Eje de abscisa (eje OX): Resolvemos el sistema: $\begin{cases} y = \sqrt{9 - x^2} \\ y = 0 \end{cases}$ Ya lo hemos resuelto en el dominio, los puntos de corte son: (3,0) y (-3,0)

Eje de ordenadas (eje OY): Resolvemos el sistema:
$$\begin{cases} y = \sqrt{9 - x^2} \\ x = 0 \end{cases} \Rightarrow y = 3 \text{ Punto de corte } (0,3)$$

Asíntotas:

Asín. verticales: No tiene pues es continua en su dominio y en x = 3 y x = -3, la función toma un valor (no se va a ningún infinito).

Asín. Horizontales: En $+\infty$ y $-\infty$, no podemos calcular los límites pues está fuera del dominio. Por tanto, no hay.

Asín. Oblicuas: Lo mismo que en las horizontales

Intervalos de crecimiento y decrecimiento (monotonía):

Derivamos la función $f(x) = \sqrt{9-x^2} \Rightarrow f'(x) = \frac{-2x}{2\sqrt{9-x^2}} = \frac{-x}{\sqrt{9-x^2}}$. Igualamos a 0: $\frac{-x}{\sqrt{9-x^2}} = 0 \Rightarrow -x = 0 \Rightarrow x = 0$ Observad además que la función no es derivable en $\begin{cases} x = 3 \\ x = -3 \end{cases}$ pues estos valores anulan el denominador de la derivada.

Hacemos la tabla de signos:

	(-3,0)	(0,3)
$f'(x) = \frac{-x}{\sqrt{9 - x^2}}$	+	-
	Creciente	Decreciente

Extremos locales:

Con el estudio de la monotonía ya obtenemos los extremos locales sin tener que aplicar el criterio de la 2ª derivada. En x=0, tiene un máximo relativo. El punto en concreto es $\left(0,3\right)$. Además, como la función es continua y en los extremos del dominio los valores que alcanza la función son menores que este máximo relativo, pues es un máximo absoluto.

Intervalos de concavidad (curvatura):

Hacemos la 2ª derivada:
$$f'(x) = \frac{-x}{\sqrt{9-x^2}} \Rightarrow f''(x) = \frac{-1\cdot\sqrt{9-x^2}-(-x)\cdot\frac{-2x}{2\sqrt{9-x^2}}}{(\sqrt{9-x^2})^2} \Rightarrow f''(x) = \frac{-\sqrt{9-x^2}-\frac{x^2}{\sqrt{9-x^2}}}{9-x^2} \Rightarrow f''(x) = \frac{-\frac{(9-x^2)-x^2}{\sqrt{9-x^2}}}{(9-x^2)} \Rightarrow f''(x) = \frac{-9}{(9-x^2)\sqrt{9-x^2}} = 0$$
 y como vemos no se anula nunca.

Hacemos la tabla de signos correspondiente: (en este caso no sería necesario siempre sale – porque el numerador es –9 y el denominador siempre es positivo al ser $x \in (-3,3)$

	(-3,3)
$f''(x) = \frac{-9}{(9-x^2)\sqrt{9-x^2}}$	-
	Cóncava C

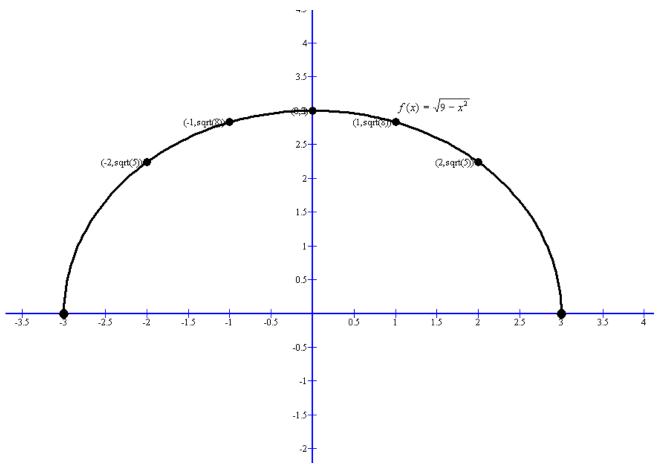
Puntos de inflexión:

No tiene pues no hay cambio de curvatura y además no se anula la derivada 2ª

Pequeña tabla de valores:

Х	Υ
-2	$\sqrt{5}$
-1	$2\sqrt{2}$
1	$2\sqrt{2}$
2	$\sqrt{5}$

La gráfica es la siguiente:



Como podéis observar es una semicircunferencia. Este problema se podía haber hecho con los conocimientos de cónicas dados en 1º Bachillerato, pues de la circunferencia $x^2+y^2=9$ (que tiene centro en (0,0) y radio 3), si despejamos la y nos resulta $y=\pm\sqrt{9-x^2}$. Si nos quedamos con el signo +, nos da la función y con el signo – la otra semicircunferencia.

Ejemplo 12: Representar gráficamente la función $f(x) = \frac{x^3}{x^2 - 1}$

<u>Dominio</u>: Por ser racional tenemos que saber dónde se anula el denominador: $x^2 - 1 = 0 \Rightarrow \begin{cases} x = 1 \\ x = -1 \end{cases}$

Así, $Dom(f) = R - \{1, -1\}$

<u>Simetrías</u>: $f(-x) = \frac{(-x)^3}{(-x)^2 - 1} = \frac{-x^3}{x^2 - 1} = -f(x)$ Luego presenta simetría impar. Es simétrica respecto al origen de coordenadas

Periodicidad: Obviamente no es periódica

Cortes con los ejes:

Eje de abscisa (eje OX): Resolvemos el sistema:
$$\begin{cases} y = \frac{x^3}{x^2 - 1} \Rightarrow x = 0 \text{ Punto de corte } (0,0) \\ y = 0 \end{cases}$$

Eje de ordenadas (eje OY): Resolvemos el sistema:
$$\begin{cases} y = \frac{x^3}{x^2 - 1} \Rightarrow y = 0 \text{ Punto de corte } (0,0) \\ x = 0 \end{cases}$$

Asíntotas:

<u>Asín. verticales</u>: Puede presentar A.V. en x = 1 y en x = -1, que son los dos puntos que no son del dominio y anulan el denominador (al dividir por 0 puede que se vaya a infinito).

En x = 1: Hacemos los límites laterales:

$$\lim_{x\to 1^+}\frac{x^3}{x^2-1}=\frac{1}{0^+}=+\infty\quad \text{y por la izquierda}\quad \lim_{x\to 1^-}\frac{x^3}{x^2-1}=\frac{1}{0^-}=-\infty\quad \text{La recta vertical }r\equiv x=1\text{ es}$$
 una A.V. Por la derecha la función se va a $+\infty$ y por la izquierda a $-\infty$

En x = -1: Hacemos los límites laterales:

$$\lim_{x\to -1^+}\frac{x^3}{x^2-1}=\frac{-1}{0^-}=+\infty \quad \text{y por la izquierda} \quad \lim_{x\to -1^-}\frac{x^3}{x^2-1}=\frac{-1}{0^+}=-\infty \quad \text{La recta vertical } r\equiv x=-1 \text{ es una A.V. Por la derecha la función se va a } +\infty \text{ y por la izquierda a } -\infty$$

Asín. Horizontales: En $+\infty$, calculamos $\lim_{x\to+\infty}\frac{x^3}{x^2-1}=+\infty$, no tiene

En
$$-\infty$$
, calculamos $\lim_{x\to +\infty} \frac{x^3}{x^2-1} = -\infty$, no tiene.

Nos aportan información de por dónde va el dibujo al irnos para infinito.

Asín. Oblicuas: En
$$+\infty$$
, calculamos $m = \lim_{x \to +\infty} \frac{x^3}{x^2 - 1}$: $x = \lim_{x \to +\infty} \frac{x^3}{x^3 - x} = 1$, y ahora

$$n = \lim_{x \to +\infty} \frac{x^3}{x^2 - 1} - x = \lim_{x \to +\infty} \frac{x^3 - x^3 + x}{x^3 - x} = 0$$
. La recta $b \equiv y = x$ (conocida como bisectriz del primer

y tercer cuadrante) es A. Oblicua en $+\infty$

En $-\infty$, el proceso es totalmente análogo y resulta que también la recta $b \equiv y = x$ es A. Oblicua en $-\infty$

<u>NOTA</u>: Una opción interesante una vez obtenidas las asíntotas, es calcular los puntos de corte de las asíntotas horizontales y oblicuas con la función, que nos pueden ayudar a determinar si la función va a un lado o a otro de

la asíntota. Lo hacemos con la única asíntota oblicua:
$$\begin{cases} y = \frac{x^3}{x^2 - 1} \Rightarrow \frac{x^3}{x^2 - 1} = x \Rightarrow x^3 = x^3 - x \Rightarrow x = 0 \\ y = x \end{cases}$$

El punto de corte es (0,0)

Intervalos de crecimiento y decrecimiento (monotonía):

Derivamos la función
$$f(x) = \frac{x^3}{x^2 - 1} \Rightarrow f'(x) = \frac{x^4 - 3x^2}{(x^2 - 1)^2}$$
. Igualamos a 0: $\frac{x^4 - 3x^2}{(x^2 - 1)^2} = 0 \Rightarrow x^4 - 3x^2 = 0 \Rightarrow x^4 - 3x^2 = 0$

$$x^{2} \cdot (x^{2} - 3) = 0 \Rightarrow \begin{cases} x = 0 \\ x = \sqrt{3} \\ x = -\sqrt{3} \end{cases}$$

Hacemos la tabla de signos:

	$\left(-\infty,-\sqrt{3}\right)$	$\left(-\sqrt{3},-1\right)$	(-1,1)	$(1,\sqrt{3})$	$(\sqrt{3},+\infty)$
$f'(x) = \frac{x^4 - 3x^2}{(x^2 - 1)^2} =$					
$\frac{x^2 \cdot (x^2 - 3)}{(x^2 - 1)^2}$	+	-	-	-	+
Si nos fijamos, para el signo sólo hay que estudiar el factor (x^2-3)					
	Creciente	Decreciente	Decreciente	Decreciente	Creciente

Extremos locales:

Con el estudio de la monotonía ya obtenemos los extremos locales sin tener que aplicar el criterio de la 2ª derivada.

En
$$x=-\sqrt{3}$$
, tiene un máximo relativo. El punto en concreto es $\left(-\sqrt{3},\frac{-3\sqrt{3}}{2}\right)$

En
$$x=\sqrt{3}$$
 , la función tiene un mínimo relativo. El punto en concreto es $\left(\sqrt{3},\frac{3\sqrt{3}}{2}\right)$

En
$$\begin{cases} x = 1 \\ x = -1 \end{cases}$$
 por no ser del dominio, no tiene sentido estudiar extremos.

Intervalos de concavidad (curvatura):

Hacemos la 2ª derivada:
$$f'(x) = \frac{x^4 - 3x^2}{(x^2 - 1)^2} \Rightarrow f''(x) = \frac{(4x^3 - 6x)(x^2 - 1)^2 - (x^4 - 3x^2) \cdot 2 \cdot (x^2 - 1) \cdot 2x}{(x^2 - 1)^4} \Rightarrow \text{Sacamos}$$

factor común
$$(x^2 - 1)$$
 del numerador $\rightarrow f''(x) = \frac{(x^2 - 1) \cdot \left((4x^3 - 6x)(x^2 - 1) - (x^4 - 3x^2) \cdot 4x \right)}{(x^2 - 1)^4} \rightarrow \text{Simplificamos y}$

operamos, quedándonos:
$$f''(x) = \frac{2x^3 + 6x}{(x^2 - 1)^3}$$
 Igualamos a 0: $f''(x) = \frac{2x^3 + 6x}{(x^2 - 1)^3} = 0 \Rightarrow 2x^3 + 6x = 0 \Rightarrow 2x^3 + 6$

$$2x(x^2+3)=0 \Rightarrow x=0$$
 es la única solución

Hacemos la tabla de signos correspondiente: (en este caso no sería necesario siempre sale – porque el numerador es –9 y el denominador siempre es positivo al ser $x \in (-3,3)$

	$(-\infty,-1)$	(-1,0)	(0,1)	(1,+∞)
$f''(x) = \frac{2x^3 + 6x}{(x^2 - 1)^3}$	-	+	-	+
	Cóncava	Convexa U	Cóncava	Convexa U

Puntos de inflexión:

En x=0 hay un punto de inflexión convexo-cóncavo. Nuevamente x=1 y x=-1 no son tenidos en cuenta para ser candidatos a puntos de inflexión pues no son del dominio.

Pequeña tabla de valores:

Х	Υ		
-3	-27/8		
-2	-8/3		
-1/2	1/6		
1/2	-1/6		
2	8/3		
3	27/8		

