# **RELACIÓN 1 EJERCICIOS: DISTRIBUCIONES IDIMENSIONALES**

## Ejercicio 1:

Considera estas variables bidimensionales, y escribe las variables unidimensionales correspondientes y tres pares de valores que las determinan.

- a) Edad y sexo de los asistentes a un concierto.
- b) Tamaño de un archivo informático y tiempo que se tarda en copiarlo.
  - a)  $X \rightarrow Edad$ , en años, de los asistentes al concierto

 $Y \rightarrow$  Sexo de los asistentes

(20, mujer) (25, hombre) (28, mujer)

b)  $X \rightarrow \text{Tamaño}$ , en kb, del archivo informático

 $Y \rightarrow$  Tiempo, en s, que se tarda en copiarlo

(220, 35) (158, 24)

(285, 42)

## Ejercicio 2:

En un estudio estadístico se han obtenido estos datos.

(3, 6)

(3, 6)

(1, 4) (1, 8) (2, 8) (3, 6) (2, 6) (2, 4) (1, 8) (1, 6)

(2, 8)

- a) ¿Cuáles son las frecuencias absolutas conjuntas? ¿Y las marginales?
- b) Determina las frecuencias relativas.

| a) | Datos  | Frecuencias absolutas conjuntas |
|----|--------|---------------------------------|
|    | (1, 4) | 1                               |
|    | (1, 6) | 1                               |
|    | (1, 8) | 2                               |
|    | (2, 4) | 1                               |
|    | (2, 6) | 1                               |
|    | (2, 8) | 2                               |
|    | (3, 6) | 2                               |

| <b>X</b> i | $f_{i}$ |
|------------|---------|
| 1          | 4       |
| 2          | 4       |
| 3          | 2       |

| <b>y</b> i | <b>f</b> i |
|------------|------------|
| 4          | 2          |
| 6          | 4          |
| 8          | 4          |

b)

| Datos  | Frecuencias relativas conjuntas |  |  |
|--------|---------------------------------|--|--|
| (1, 4) | 0,1                             |  |  |
| (1, 6) | 0,1                             |  |  |
| (1, 8) | 0,2                             |  |  |
| (2, 4) | 0,1                             |  |  |
| (2, 6) | 0,1                             |  |  |
| (2, 8) | 0,2                             |  |  |
| (3, 6) | 0,2                             |  |  |

| <b>X</b> <sub>i</sub> | <b>f</b> <sub>i</sub> |
|-----------------------|-----------------------|
| 1                     | 0,4                   |
| 2                     | 0,4                   |
| 3                     | 0,2                   |

| <b>y</b> i | $f_{i}$ |
|------------|---------|
| 4          | 0,2     |
| 6          | 0,4     |
| 8          | 0,4     |

## Ejercicio 3:

Observa esta tabla de doble entrada.

- a) ¿Cuál es la frecuencia absoluta conjunta del par (10, 200)?
   ¿Y la relativa conjunta de este par?
- b) Indica las frecuencias marginales de 5 y 300.

| YX    | 5 | 5 10 |    | Total |
|-------|---|------|----|-------|
| 100   | 3 | 2    | 5  | 10    |
| 200   | 1 | 8    | 6  | 15    |
| 300   | 2 | 1    | 2  | 5     |
| Total | 6 | 11   | 13 | 30    |

- a) La frecuencia absoluta conjunta es 8 y la relativa es  $\frac{8}{30} = 0.27$ .
- b) La frecuencia absoluta marginal de 5 es 6 y la relativa es  $\frac{6}{30} = 0.2$ . La frecuencia absoluta marginal de 300 es 5 y la relativa es  $\frac{5}{30} = 0.17$ .

## Ejercicio 4:

Ordena estos datos en una tabla de doble entrada.

| Χ | Υ  |
|---|----|
| 0 | 18 |
| 0 | 12 |
| 1 | 7  |
| 2 | 8  |

| Χ | Υ  |  |  |
|---|----|--|--|
| 1 | 14 |  |  |
| 2 | 23 |  |  |
| 1 | 17 |  |  |
| 2 | 8  |  |  |

- a) ¿Hay pares de datos que tengan la misma frecuencia absoluta conjunta?
- b) Indica las frecuencias marginales de la variable X.

| YX    | 0 | 1 | 2 | Total |  |
|-------|---|---|---|-------|--|
| 7     | 0 | 1 | 0 | 1     |  |
| 8     | 0 | 0 | 2 | 2     |  |
| 12    | 1 | 0 | 0 | 1     |  |
| 14    | 0 | 1 | 0 | 1     |  |
| 17    | 0 | 1 | 0 | 1     |  |
| 18    | 1 | 0 | 0 | 1     |  |
| 23    | 0 | 0 | 1 | 1     |  |
| Total | 2 | 3 | 3 | 8     |  |

a) Todos los pares tienen la misma frecuencia absoluta conjunta salvo el (2, 8).

| b) | <b>X</b> i | <b>f</b> i |
|----|------------|------------|
|    | 0          | 2          |
|    | 1          | 3          |
|    | 2          | 3          |

## Ejercicio 5:

Construye la tabla de doble entrada y las tablas marginales correspondientes.

| Χ | 16 | 17 | 18 | 16 | 14 | 17 | 14 | 13 | 14 | 15 |
|---|----|----|----|----|----|----|----|----|----|----|
| Υ | 5  | 4  | 6  | 6  | 8  | 3  | 5  | 4  | 8  | 8  |

| Y     | 13 | 14 | 15 | 16 | 17 | 18 | Total |
|-------|----|----|----|----|----|----|-------|
| 3     | 0  | 0  | 0  | 0  | 1  | 0  | 1     |
| 4     | 1  | 0  | 0  | 0  | 1  | 0  | 2     |
| 5     | 0  | 1  | 0  | 1  | 0  | 0  | 2     |
| 6     | 0  | 0  | 0  | 1  | 0  | 1  | 2     |
| 8     | 0  | 2  | 1  | 0  | 0  | 0  | 3     |
| Total | 1  | 3  | 1  | 2  | 2  | 1  | 10    |

# Tabla de frecuencias marginales de X

| Xi    | f <sub>i</sub> |
|-------|----------------|
| 13    | 1              |
| 14    | 3              |
| 15    | 1              |
| 16    | 2              |
| 17    | 2              |
| 18    | 1              |
| Total | 10             |

Tabla de frecuencias marginales de Y

| <b>y</b> i | f <sub>i</sub> |
|------------|----------------|
| 3          | 1              |
| 4          | 2              |
| 5          | 2              |
| 6          | 2              |
| 8          | 3              |
| Total      | 10             |

## Ejercicio 6:

. La siguiente tabla proporciona la distribución conjunta de frecuencias absolutas de la variable X, que representa el número de tarjetas de crédito que posee una persona, y la variable Y, que representa el número de compras semanales realizadas con tarjeta de crédito.

| YX | 1  | 2  | 3 | 4 |
|----|----|----|---|---|
| 1  | 20 | 16 | 2 | 0 |
| 2  | 10 | 4  | 6 | 0 |
| 3  | 8  | 2  | 8 | 4 |

- a) Calcula las distribuciones marginales. ¿Cuántas personas tienen más de tres tarjetas?
- b) ¿Cuál es el número más frecuente de tarjetas de crédito?
- c) ¿Cuántas personas realizan dos o menos de dos compras semanales?
- d) ¿Cuál es la media y la varianza del número de tarjetas que posee una persona?
- e) ¿Cuál es la media y la varianza del número de compras semanales realizadas con tarjeta?

Construimos las siguientes tablas:

| X <sub>I</sub> | f, | $x_i f_i$ | $\mathbf{x}_{l}^{2}\mathbf{f}_{l}$ |
|----------------|----|-----------|------------------------------------|
| 1              | 38 | 38        | 38                                 |
| 2              | 22 | 44        | 88                                 |
| 3              | 16 | 48        | 144                                |
| 4              | 4  | 16        | 64                                 |
|                | 80 | 146       | 334                                |

| <b>y</b> <sub>i</sub> | f, | $y_i f_i$ | $y_i^2 f_i$ |
|-----------------------|----|-----------|-------------|
| 1                     | 38 | 38        | 38          |
| 2                     | 20 | 40        | 80          |
| 3                     | 22 | 66        | 198         |
|                       | 80 | 146       | 316         |

- a) Cuatro personas tienen más de tres tarjetas.
- b) El número más frecuente de tarjetas de crédito es 1.
- c) 20 + 38 = 58 personas realizan más de dos compras semanales.

d) 
$$\bar{x} = \frac{146}{80} = 1,825$$
 tarjetas  $s_{\chi}^2 = \frac{334}{80} - 1,825^2 = 0,84$   $s_{\chi} = 0,92$  e)  $\bar{y} = \frac{144}{80} = 1,8$  compras  $s_{\gamma}^2 = \frac{316}{80} - 1,8^2 = 0,71$   $s_{\gamma} = 0,84$ 

$$s_{\chi}^{2} = \frac{334}{80} - 1,825^{2} = 0,84$$

$$s_x = 0.92$$

e) 
$$\bar{y} = \frac{144}{80} = 1.8$$
 compras

$$s_{\gamma}^2 = \frac{316}{80} - 1.8^2 = 0.71$$

$$s_{\gamma} = 0.84$$

#### Ejercicio 7:

La siguiente tabla muestra las calificaciones obtenidas por cinco alumnos en Bachillerato(X) y en las PAU(Y).

| Bachillerato | 5,4 | 6,8 | 5,3 | 7,4 | 4,3 |
|--------------|-----|-----|-----|-----|-----|
| PAU          | 5,8 | 4,8 | 5,9 | 7,4 | 4,2 |

A partir de ella, calcula:

- a) Las medias y las varianzas de X y de Y.
- b) La covarianza de (X, Y).

Formamos la tabla:

| X <sub>I</sub> | <b>y</b> <sub>i</sub> | X 2    | <b>y</b> <sup>2</sup> | $\mathbf{x}_{i}\mathbf{y}_{i}$ |
|----------------|-----------------------|--------|-----------------------|--------------------------------|
| 5,4            | 5,8                   | 29,16  | 33,64                 | 31,32                          |
| 6,8            | 4,8                   | 46,24  | 23,04                 | 32,64                          |
| 5,3            | 5,9                   | 28,09  | 34,81                 | 31,27                          |
| 7,4            | 7,4                   | 54,76  | 54,76                 | 54,76                          |
| 4,3            | 4,2                   | 18,49  | 17,64                 | 18,06                          |
| 29,2           | 28,1                  | 176,74 | 163,89                | 168,05                         |

a) 
$$\bar{x} = \frac{29.2}{5} = 5.84$$
  $s_{\bar{x}}^2 = \frac{176.74}{5} - 5.84^2 = 1.2424$   $\bar{y} = \frac{28.1}{5} = 5.62$   $s_{\bar{y}}^2 = \frac{163.89}{5} - 5.62^2 = 1.1936$  b)  $S_{XY} = \frac{168.05}{5} - 5.84 \cdot 5.62 = 0.7892$ 

b) 
$$S_{XY} = \frac{168,05}{5} - 5,84 \cdot 5,62 = 0,7892$$

## Ejercicio 8:

En un depósito cilíndrico la altura del agua que contiene varía conforme pasa el tiempo según la siguiente tabla:

| Tiempo (h) | 8  | 22 | 27 | 33 | 50 | 70 |
|------------|----|----|----|----|----|----|
| Altura (m) | 17 | 14 | 12 | 11 | 6  | 1  |

Halla:

- a) Las medias de X y de Y.
- b) Las varianzas de X y de Y.
- c) La covarianza de (X, Y)

Formamos la tabla:

| X <sub>I</sub> | <b>y</b> <sub>i</sub> | X <sub>I</sub> <sup>2</sup> | <b>y</b> <sup>2</sup> 1 | $x_i y_i$ |
|----------------|-----------------------|-----------------------------|-------------------------|-----------|
| 8              | 17                    | 64                          | 289                     | 136       |
| 22             | 14                    | 484                         | 196                     | 308       |
| 27             | 12                    | 729                         | 144                     | 324       |
| 33             | 11                    | 1089                        | 121                     | 363       |
| 50             | 6                     | 2500                        | 36                      | 300       |
| 70             | 1                     | 4900                        | 1                       | 70        |
| 210            | 61                    | 9766                        | 787                     | 1501      |

a) 
$$\bar{x} = \frac{210}{6} = 35$$

$$\bar{y} = \frac{61}{6} = 10,17$$
b)  $s_X^2 = \frac{9766}{6} - 35^2 = 402,67$ 

$$s_Y^2 = \frac{787}{6} - 10,17^2 = 27,74$$
c)  $S_{XY} = \frac{1501}{6} - 35 \cdot 10,17 = -105,78$ 

#### Ejercicio 9:

Si el signo de la covarianza entre dos variables es negativa, ¿qué podemos decir del signo del coeficiente de correlación?

¿Y si la covarianza es positiva?

Si la covarianza es negativa, el coeficiente de correlación es negativo. Y si la covarianza es positiva, el coeficiente de correlación es también positivo.

## Ejercicio 10:

Representa el diagrama de dispersión y halla el coeficiente de correlación

de esta variable.

| Χ | 39  | 43  | 40  | 40  | 42  | 41  | 42  | 38  | 39  | 44  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Y | 167 | 184 | 177 | 168 | 185 | 173 | 180 | 164 | 170 | 194 |

¿Qué relación puedes describir entre ellos?

$$\overline{x} = \frac{408}{10} = 40.8$$
  $\overline{y} = \frac{1.762}{10} = 176.2$ 

$$\sigma_x = \sqrt{3,36} = 1,83$$
  $\sigma_y = \sqrt{81,96} = 9,05$ 

$$\sigma_{XY} = \frac{72.046}{10} - 40.8 \cdot 176.25 = 13.6$$
  $r_{XY} = \frac{13.6}{1.83 \cdot 9.05} = 0.82$ 

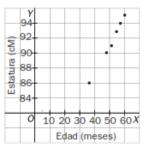


## Ejercicio 11:

. La tabla adjunta expresa los valores de la variable bidimensional edad, en meses, y estatura, en centímetros, de una niña entre los 3 y los 5 años. Representa la nube de puntos de esta variable e indica la relación existente entre la edad y la estatura.

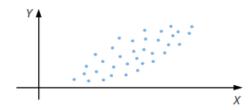
| Edad (meses)  | 36 | 48 | 51 | 54 | 57 | 60 |
|---------------|----|----|----|----|----|----|
| Estatura (cm) | 86 | 90 | 91 | 93 | 94 | 95 |

Según se observa en el diagrama de dispersión, existe una correlación lineal positiva fuerte.



## Ejercicio 12:

Indica la dependencia entre estas variables.

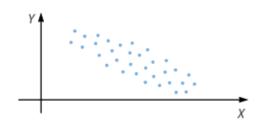


Dependencia lineal débil y positiva.

#### Ejercicio 13:

Describe el grado de correlación entre las dos variables representadas.

> La correlación lineal es débil y negativa.



#### Ejercicio 14:

Determina la covarianza para los datos que aparecen en la siguiente tabla.

| Χ | 8  | 10 | 11 | 9  | 13 | 12 | 9  | 14 |
|---|----|----|----|----|----|----|----|----|
| Y | 20 | 18 | 16 | 22 | 10 | 10 | 21 | 9  |

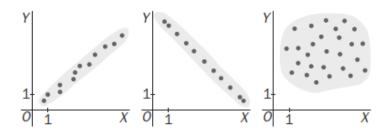
$$\overline{x} = \frac{86}{8} = 10,75$$

$$\overline{y} = \frac{126}{8} = 15,75$$

$$\sigma_{xy} = \frac{1.279}{8} - 10,75 \cdot 15,75 = -9,44$$

## Ejercicio 15:

. Los números 0, 0,8 y 1 son los valores absolutos del coeficiente de correlación de las distribuciones bidimensionales cuyas nubes de puntos se adjuntan:



Asigna a cada diagrama su coeficiente de correlación, cambiando el signo cuando sea necesario.

Primero: 0,8 Segundo: -1 Tercero: 0

## Ejercicio 16:

(PAU) Los resultados de los exámenes de Inglés (X) y Matemáticas (Y) de 8 alumnos han sido los siguientes:

| X | 8 | 9   | 8,5 | 7 | 7   | 7,5 | 7,5 | 6,5 |
|---|---|-----|-----|---|-----|-----|-----|-----|
| Y | 7 | 7,5 | 8   | 6 | 6,5 | 7   | 6,5 | 2   |

- a) Halla el coeficiente de correlación de las calificaciones en Inglés y Matemáticas de los siete primeros alumnos.
- b) Calcula el coeficiente de correlación de esas dos variables para los ocho alumnos.
- c) Explica la diferencia entre los resultados obtenidos.

a) Formamos la tabla:

| X <sub>I</sub> | <b>y</b> <sub>i</sub> | X 2    | <b>y</b> ² | $x_i y_i$ |
|----------------|-----------------------|--------|------------|-----------|
| 8              | 7                     | 64     | 49         | 56        |
| 9              | 7,5                   | 81     | 56,25      | 67,5      |
| 8,5            | 8                     | 72,25  | 64         | 68        |
| 7              | 6                     | 49     | 36         | 42        |
| 7              | 6,5                   | 49     | 42,25      | 45,5      |
| 7,5            | 7                     | 56,25  | 49         | 52,5      |
| 7,5            | 6,5                   | 56,25  | 42,25      | 48,75     |
| 54,5           | 48,5                  | 427,75 | 338,75     | 380,25    |

$$\bar{x} = \frac{54,5}{7} = 7,79$$
  $\bar{y} = \frac{48,5}{7} = 6,93$ 

$$s_{\chi}^{2} = \frac{427,75}{7} - 7,79^{2} = 0,42$$
  $s_{\chi} = \sqrt{0,42} = 0,65$ 

$$s_{\gamma}^{2} = \frac{338,75}{7} - 6,93^{2} = 0,37$$
  $s_{\gamma} = \sqrt{0,37} = 0,61$ 

$$S_{\chi\gamma} = \frac{380,25}{7} - 7,79 \cdot 6,93 = 0,34$$

$$r = \frac{S_{\chi\gamma}}{s_{\chi}s_{\gamma}} = \frac{0,34}{0,65 \cdot 0,61} = 0,86$$

b) Formamos la tabla:

| X,  | <b>y</b> , | <b>X</b> <sub>I</sub> <sup>2</sup> | <b>y</b> <sup>2</sup> 1 | $\boldsymbol{x}_{i} \boldsymbol{y}_{i}$ |
|-----|------------|------------------------------------|-------------------------|-----------------------------------------|
| 8   | 7          | 64                                 | 49                      | 56                                      |
| 9   | 7,5        | 81                                 | 56,25                   | 67,5                                    |
| 8,5 | 8          | 72,25                              | 64                      | 68                                      |
| 7   | 6          | 49                                 | 36                      | 42                                      |
| 7   | 6,5        | 49                                 | 42,25                   | 45,5                                    |
| 7,5 | 7          | 56,25                              | 49                      | 52,5                                    |
| 7,5 | 6,5        | 56,25                              | 42,25                   | 48,75                                   |
| 6,5 | 2          | 42,25                              | 4                       | 13                                      |
| 61  | 50,5       | 470                                | 342,75                  | 393,25                                  |

$$\bar{x} = \frac{61}{8} = 7,635$$
  $\bar{y} = \frac{50,5}{8} = 6,4125$ 

$$s_{\chi}^{2} = \frac{470}{8} - 7,625^{2} = 0,61$$
  $s_{\chi} = \sqrt{0,61} = 0,78$ 

$$s_{\gamma}^{2} = \frac{342,75}{8} - 6,3125^{2} = 3$$
  $s_{\gamma} = \sqrt{3} = 1,73$ 

$$S_{\chi\gamma} = \frac{393,25}{8} - 7,625 \cdot 6,3125 = 1,02$$

$$r = \frac{S_{\chi\gamma}}{s_{\chi}s_{\gamma}} = \frac{1,02}{0,78 \cdot 1,73} = 0,76$$

c) Mientras que los siete primeros alumnos tienen una nota pareja en las dos materias, el último no.

#### Eiercicio 17:

(PAU) En cierto país, el tipo de interés y el índice de la Bolsa en los seis últimos meses vienen dados por la siguiente tabla.

| Tipo de interés (%) | 8   | 7,5 | 7,2 | 6   | 5,5 | 5   |
|---------------------|-----|-----|-----|-----|-----|-----|
| Índice              | 120 | 130 | 134 | 142 | 150 | 165 |

Halla el índice previsto de la Bolsa en el séptimo mes, suponiendo que el tipo de interés en ese mes fue del 4,1%, y analiza la fiabilidad de la predicción, según el valor del coeficiente de correlación.

Formamos la tabla:

| X <sub>I</sub> | <b>y</b> ı | <b>X</b> <sub>1</sub> <sup>2</sup> | <b>y</b> ; | $\mathbf{x}_{t}\mathbf{y}_{t}$ |
|----------------|------------|------------------------------------|------------|--------------------------------|
| 8              | 120        | 64                                 | 14400      | 960                            |
| 7,5            | 130        | 56,25                              | 16900      | 975                            |
| 7,2            | 134        | 51,84                              | 17956      | 964,8                          |
| 6              | 142        | 36                                 | 20164      | 852                            |
| 5,5            | 150        | 30,25                              | 22500      | 825                            |
| 5              | 165        | 25                                 | 27 225     | 825                            |
| 39,2           | 841        | 263,34                             | 119145     | 4501,8                         |

$$\bar{x} = \frac{39,2}{6} = 6,53$$
  $\bar{y} = \frac{841}{6} = 140,17$   $s_{\chi}^2 = \frac{263,34}{6} - 6,53^2 = 1,25$   $s_{\chi} = \sqrt{1,2491} = 1,12$   $s_{\gamma}^2 = \frac{119145}{6} - 140,17^2 = 209,8711$   $s_{\gamma} = \sqrt{209,8711} = 14,48$   $s_{\chi\gamma} = \frac{5401,8}{6} - 6,53 \cdot 140,17 = -15,01$ 

La recta de regresión de Y sobre X es: 
$$y - 140,17 = \frac{-15,01}{1,25} (x - 6,53) \Rightarrow y = -12,008x + 218,58$$
.

$$y = -12,008 \cdot 4,1 + 218,58 = 169,35$$
 es el índice de Bolsa esperado para el siguiente mes.

Como 
$$r = \frac{S_{\chi\gamma}}{s_{\chi}s_{\gamma}} = \frac{-15,01}{1,12 \cdot 14,48} = -0,93$$
, el resultado obtenido es fiable.

## Ejercicio 18:

Halla la recta de regresión de Y sobre X.

| X | 2 | 5  | 6  | 8  | 9  |
|---|---|----|----|----|----|
| Y | 4 | 13 | 16 | 22 | 25 |

$$\overline{X} = \frac{30}{5} = 6$$
 $\overline{y} = \frac{80}{5} = 16$ 
 $\sigma_{XY}^2 = \frac{30}{5} = 6$ 
 $\sigma_{XY} = \frac{570}{5} - 6 \cdot 16 = 18$ 

Recta de regresión de Y sobre X: 
$$y - 16 = \frac{18}{6}(x - 6) \rightarrow y = 3x - 2$$

## Ejercicio 19:

Se hizo una prueba a 10 estudiantes para ver la relación que había entre la expresión oral (X) y la destreza manual (Y), obteniéndose la siguiente tabla.

| X | 8 | 7 | 6 | 5 | 4 | 3 | 7 | 6 | 9 | 5 |
|---|---|---|---|---|---|---|---|---|---|---|
| Y | 5 | 5 | 6 | 7 | 8 | 7 | 4 | 5 | 3 | 5 |

- a) Calcula razonadamente la media y la desviación típica de X.
- b) Calcula razonadamente la media y la desviación típica de Y.
- c) ¿Qué distribución está más dispersa? Justifica la respuesta.
- d) Calcula el coeficiente de correlación lineal e interprétalo.

#### Formamos la tabla:

| X, | <b>y</b> <sub>i</sub> | X 2 | <b>y</b> <sup>2</sup> <sup>1</sup> | $\boldsymbol{x}_{l} \boldsymbol{y}_{l}$ |
|----|-----------------------|-----|------------------------------------|-----------------------------------------|
| 8  | 5                     | 64  | 25                                 | 40                                      |
| 7  | 5                     | 49  | 25                                 | 35                                      |
| 6  | 6                     | 36  | 36                                 | 36                                      |
| 5  | 7                     | 25  | 49                                 | 35                                      |
| 4  | 8                     | 16  | 64                                 | 32                                      |
| 3  | 7                     | 9   | 49                                 | 21                                      |
| 7  | 4                     | 49  | 16                                 | 28                                      |
| 6  | 5                     | 36  | 25                                 | 30                                      |
| 9  | 3                     | 81  | 9                                  | 27                                      |
| 5  | 5                     | 125 | 25                                 | 25                                      |
| 60 | 55                    | 390 | 323                                | 309                                     |

a) 
$$\bar{x} = \frac{60}{10} = 6$$
  $s_{\chi}^2 = \frac{390}{10} - 6^2 = 3$   $s_{\chi} = 1,73$ 

b) 
$$\bar{y} = \frac{55}{10} = 5.5$$
  $s_{\gamma}^2 = \frac{323}{10} - 6^2 = 2.05$   $s_{\gamma} = 1.43$ 

c) Como la desviación típica de X es mayor que la desviación típica de Y, está más dispersa la distribución de X.

d) 
$$s_{xy} = \frac{309}{10} - 6 \cdot 5,5 = -2,1$$
  $r = \frac{s_{xy}}{s_x s_y} = \frac{-2,1}{1,73 \cdot 1,43} = -0,85$ 

La correlación es inversa: a mejor expresión oral, peor destreza manual.

## Ejercicio 20:

Los datos siguientes corresponden a la altura sobre el nivel del mar (X) y la presión atmosférica (Y) de siete puntos.

| X | 11 | 14 | 16 | 15 | 16 | 18 | 20 | 21 | 14 | 20 | 19 | 11 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|
| Y | 2  | 3  | 5  | 6  | 5  | 3  | 7  | 10 | 6  | 10 | 5  | 6  |

- a) Halla la recta de regresión de Y sobre X.
- b) ¿Qué presión atmosférica habría sobre Peña Vieja (2600 metros de altitud aproximadamente)?
- a) Formamos la tabla siguiente:

| X <sub>I</sub> | <b>y</b> , | X 2     | <b>y</b> <sup>2</sup> | $\mathbf{x}_{i}\mathbf{y}_{i}$ |
|----------------|------------|---------|-----------------------|--------------------------------|
| 0              | 760        | 0       | 577 600               | 0                              |
| 184            | 745        | 33856   | 555025                | 137 080                        |
| 231            | 740        | 53361   | 547 600               | 170940                         |
| 481            | 720        | 231 361 | 518400                | 346320                         |
| 730            | 700        | 532 900 | 490 000               | 511000                         |
| 911            | 685        | 829 921 | 469 225               | 624 035                        |
| 1550           | 650        | 2402500 | 422 500               | 1 007 500                      |
| 4087           | 5000       | 390     | 3 580 350             | 2796875                        |

$$\bar{x} = \frac{4087}{7} = 583,86$$
  $\bar{y} = \frac{5000}{7} = 714,29$ 

$$s_x^2 = \frac{4083899}{7} - 583,86^2 = 242521,64$$

$$s_{xy} = \frac{2796875}{7} - 583,86 \cdot 714,29 = -17491,79$$
Recta de regresión de la presión respecto de la altura:

$$y - 714,29 = -\frac{17491,79}{242521,64} (x - 583,86)$$
$$y = -0.07x + 755,16$$

b) Para saber qué presión atmosférica habrá en Peña Vieja, que se encuentra situada a 2600 m de altitud, sustituiremos en la ecuación anterior x = 2600.

$$y = -0.07 \cdot 2600 + 755.16 = 573.16$$
 mm de mercurio

## Ejercicio 21:

Cinco niñas de 2, 3, 5, 7 y 8 años de edad pesan, respectivamente, 14, 20, 32, 42 y 44 kilos.

- a) Halla la ecuación de la recta de regresión de edad sobre el peso.
- b) ¿Cuál sería el peso aproximado de una niña de 6 años?
- a) Formamos la tabla:

| <b>X</b> <sub>I</sub> | <b>y</b> <sub>i</sub> | X 2 | <b>y</b> <sup>2</sup> i | <b>X</b> <sub>1</sub> <b>y</b> <sub>1</sub> |
|-----------------------|-----------------------|-----|-------------------------|---------------------------------------------|
| 2                     | 14                    | 4   | 196                     | 28                                          |
| 3                     | 20                    | 9   | 400                     | 60                                          |
| 5                     | 32                    | 25  | 1024                    | 160                                         |
| 7                     | 42                    | 49  | 1764                    | 294                                         |
| 8                     | 44                    | 64  | 1936                    | 352                                         |
| 60                    | 152                   | 151 | 5320                    | 894                                         |

$$\bar{x} = \frac{25}{5} = 5$$

$$\bar{y} = \frac{152}{5} = 30.4$$

$$s_x^2 = \frac{151}{5} - 5^2 = 5.2$$

$$s_y^2 = \frac{5320}{5} - 30.4^2 = 139.84$$

$$s_{xy} = \frac{894}{5} - 5 \cdot 30.4 = 26.8$$

Recta de regresión de X sobre Y:

$$x - 5 = \frac{26.8}{139.84} (y - 30.4)$$
$$x = 0.19 y - 0.78$$

b) Recta de regresión de Y sobre X: 
$$y - 30.4 = \frac{26.8}{139.84} (x - 5); y = 5.15x + 4.65.$$

A una niña de 6 años le corresponde un peso de:  $y = 5,15 \cdot 6 + 4,65 = 35,55$  kg.

## Ejercicio 22:

En un estudio sobre los ingresos mensuales, X, y la superficie de las viviendas, Y, resulta: y = 0.02x + 47.96.

- a) Halla la estimación de la superficie de la vivienda de una familia cuyos ingresos mensuales son de 3.200 €.
- b) Si una familia vive en una casa de 90 m², ¿cuáles serán sus ingresos mensuales?

a) 
$$y = 0.02 \cdot 3.200 + 47.96 = 111.96 \text{ m}^2$$

b) 
$$0.02x + 47.96 = 90 \rightarrow x = 2.102$$
 €

#### Ejercicio 23:

Estudia la correlación entre estas variables, utilizando la calculadora para realizar las operaciones.

| Χ | 14 | 16 | 17 | 14 | 15 | 12 | 13 | 13 | 14 | 16 |
|---|----|----|----|----|----|----|----|----|----|----|
| Υ | 32 | 34 | 36 | 34 | 32 | 34 | 31 | 36 | 38 | 32 |

Determina la recta de regresión y razona si tiene sentido estimar el valor de Y si la variable X toma el valor 18.

$$\overline{X} = 14.4$$
  $\overline{y} = 33.9$   
 $\sigma_X^2 = 2.24$   $\sigma_Y^2 = 4.49$   
 $\sigma_X = 2.11$   $\sigma_Y = 2.12$   
 $\sigma_{XY} = 0.14$   
 $\sigma_{XY} = 0.03$ 

Recta de regresión de Y sobre X: 
$$y - 33.9 = \frac{0.14}{2.24}(x - 14.4) \rightarrow y = 0.06x + 33$$

Como la correlación es casi nula, no tiene sentido estimar el valor de y para x = 18.

#### Ejercicio 24:

Dada la distribución bidimensional:

| X | 5   | 6,5 | 8   | 4 | 3   |
|---|-----|-----|-----|---|-----|
| Y | 4,5 | 7   | 7,5 | 5 | 3,5 |

- a) Calcula el coeficiente de correlación lineal, interpretando el resultado.
- b) Determina la recta de regresión de Y sobre X.
- c) Determina la recta de regresión de X sobre Y.
- d) Halla el punto en que se cortan las dos rectas.

Formamos la tabla siguiente:

| X,   | <b>y</b> <sub>i</sub> | X 2    | <b>y</b> <sub>1</sub> <sup>2</sup> | $\boldsymbol{x}_{i} \boldsymbol{y}_{i}$ |
|------|-----------------------|--------|------------------------------------|-----------------------------------------|
| 5    | 4,5                   | 25     | 20,25                              | 22,5                                    |
| 6,5  | 7                     | 42,25  | 49                                 | 45,5                                    |
| 8    | 7,5                   | 64     | 56,25                              | 60                                      |
| 4    | 5                     | 16     | 25                                 | 20                                      |
| 3    | 3,5                   | 9      | 12,25                              | 10,5                                    |
| 26,5 | 27,5                  | 156,25 | 162,75                             | 158,5                                   |

$$\bar{x} = \frac{26,5}{5} = 5,3$$

$$s_x^2 = \frac{156,25}{5} - 5,3^2 = 3,16$$

$$s_x = \sqrt{3,16} = 1,78$$

$$\bar{y} = \frac{27,5}{5} = 5,5$$

$$s_y^2 = \frac{162,75}{5} - 5,5^2 = 2,3$$

$$s_y = \sqrt{2,3} = 1,52$$

$$s_{xy} = \frac{158,5}{5} - 5,3 \cdot 5,5 = 2,55$$

a) 
$$r = \frac{2,55}{1,78 \cdot 1,52} = 0,95$$
. Al ser positivo y próximo a la unidad, se trata de una correlación fuerte y positiva.

b) 
$$y - 5.5 = \frac{2.55}{3.16} (x - 5.3)$$
  $y = 0.81x + 1.2$ 

c) 
$$x - 5.3 = \frac{2.55}{2.3} (y - 5.5)$$
  $x = 1.11y - 0.81$ 

d) El punto donde se cortan las dos rectas es el  $(\bar{x}, \bar{y})$ , es decir: (5,3; 5,5).

#### Ejercicio 25:

La tabla siguiente expresa el porcentaje de alcohol en sangre de 6 conductores y los segundos que tardan en reaccionar:

| % de alcohol                    | 0,08 | 0,11 | 0,12 | 0,14 | 0,15 | 0,16 |
|---------------------------------|------|------|------|------|------|------|
| Tiempo de reacción, en segundos | 0,38 | 0,41 | 0,61 | 0,44 | 0,52 | 0,64 |

- a) ¿Qué tipo de dependencia existe entre estas variables?
- b) Estima cuál será el tiempo de reacción cuando el porcentaje de alcohol en sangre sea igual a 0,25.

a) Calculamos el coeficiente de correlación lineal.
 Formamos la tabla siguiente:

| X,   | <b>y</b> , | X 2    | <b>y</b> <sup>2</sup> 1 | $\boldsymbol{x}_{i} \boldsymbol{y}_{i}$ |
|------|------------|--------|-------------------------|-----------------------------------------|
| 0,08 | 0,38       | 0,0064 | 0,1444                  | 0,0304                                  |
| 0,11 | 0,41       | 0,0121 | 0,1681                  | 0,0451                                  |
| 0,12 | 0,61       | 0,0144 | 0,3721                  | 0,0732                                  |
| 0,14 | 0,44       | 0,0196 | 0,1936                  | 0,0616                                  |
| 0,15 | 0,52       | 0,0225 | 0,2704                  | 0,078                                   |
| 0,16 | 0,64       | 0,0256 | 0,4096                  | 0,1024                                  |
| 0,76 | 3          | 0,1006 | 1,5582                  | 0,3907                                  |

$$\bar{x} = \frac{0.76}{6} = 0.127$$
  $\bar{y} = \frac{3}{6} = 0.5$   $s_x^2 = \frac{0.1006}{6} - 0.127^2 = 0.0009$   $s_x = \sqrt{0.0009} = 0.03$   $s_y^2 = \frac{1.5582}{6} - 0.5^2 = 0.0097$   $s_y = \sqrt{0.0097} = 0.098$   $s_{xy} = \frac{0.3907}{6} - 0.127 \cdot 0.5 = 0.0016$   $r = \frac{0.0016}{0.03 \cdot 0.098} = 0.54$  Por tanto, la dependencia es positiva y débil.

b) Recta de regresión de Y sobre X: 
$$y - 0.5 = \frac{0.0016}{0.0009} (x - 0.127)$$
  $y = 1.78x + 0.27$   
Para  $x = 0.25 \implies y = 1.78 \cdot 0.25 + 0.27 = 0.715$  Luego el tiempo de reacción en segundos es 0.715.

## Ejercicio 26:

La tabla siguiente muestra la altitud en metros y la temperatura en grados centígrados a medida que se asciende en una montaña.

| Altitud (m)      | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 |
|------------------|------|------|------|------|------|------|
| Temperatura (°C) | 12,5 | 11   | 10   | 9,8  | 8,5  | 8    |

- a) ¿Qué tipo de dependencia existe entre estas variables?
- b) Estima a qué altitud se alcanzarán los cero grados.
- a) Calculamos el coeficiente de correlación lineal.
   Formamos la tabla siguiente:

| _              |                       |           |                                    |                                |
|----------------|-----------------------|-----------|------------------------------------|--------------------------------|
| X <sub>I</sub> | <b>y</b> <sub>t</sub> | X 2       | <b>y</b> <sub>1</sub> <sup>2</sup> | $\mathbf{x}_{i}\mathbf{y}_{i}$ |
| 1000           | 12,5                  | 1 000 000 | 156,25                             | 12500                          |
| 1100           | 11                    | 1210000   | 121                                | 12 100                         |
| 1200           | 10                    | 1 440 000 | 100                                | 12000                          |
| 1300           | 9,8                   | 1 690 000 | 96,04                              | 12740                          |
| 1400           | 8,5                   | 1960000   | 72,25                              | 11900                          |
| 1500           | 8                     | 2 250 000 | 64                                 | 12000                          |
| 7500           | 59,8                  | 9 550 000 | 609,54                             | 73240                          |

$$\bar{x} = \frac{7500}{6} = 1250$$
 $\bar{y} = \frac{59.8}{6} = 9.967$ 

$$s_x^2 = \frac{9550000}{6} - 1250^2 = 29166.7$$

$$s_x = \sqrt{29166.7} = 170.78$$

$$s_y^2 = \frac{609.54}{6} - 9.967^2 = 2.25$$

$$s_y = \sqrt{2.25} = 1.5$$

$$s_{xy} = \frac{73240}{6} - 1250 \cdot 9.967 = -252.08$$

$$r = \frac{-252.08}{170.78 \cdot 1.5} = -0.98$$

Por tanto, la dependencia es negativa y fuerte.

b) Recta de regresión de *X* sobre *Y*:  $x - 1250 = \frac{-252,08}{2,25}$  (y - 9,967) x = 112,04x + 2366,66Para  $y = 0 \implies x = 2366,66$ . La altitud estimada es de 2366,66 metros. Luego el tiempo de reacción en segundos es 0,715.