
HOJA 1 DE EJERCICIOS UNIDAD 12: LÍMITES DE FUNCIONES. CONTINUIDAD

a) $\lim_{x \to -5^-} f(x)$	$b) \lim_{x \to -5^+} f(x)$	c) $\lim_{x \to -5} f(x)$	d) $\lim_{x \to -4^-} f(x)$
e) $\lim_{x \to -4^+} f(x)$	f) $\lim_{x\to -4} f(x)$	g) $\lim_{x\to 0^-} f(x)$	h) $\lim_{x \to 0^+} f(x)$
$\lim_{x\to 0} f(x)$	$\lim_{x\to 2^-} f(x)$	$\lim_{k \to 2^+} f(x)$	$\lim_{x\to 2} lim f(x)$
$\lim_{x\to 3^+} f(x)$	n) $\lim_{x \to 3^-} f(x)$	o) $\lim_{x\to 3} f(x)$	$p) \lim_{x \to -\infty} f(x)$

Ejercicio 2: Representa gráficamente una función que cumpla las siguientes condiciones:

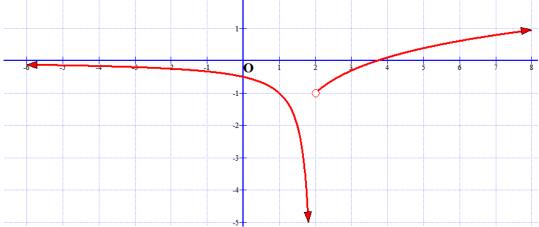
$Dom(f) = R - \{0,2\}$	$\lim_{x\to 2^+} f(x) = +\infty$	$\lim_{x \to 2^{-}} f(x) = 1$	$\lim_{x \to 0} f(x) = -1$
$\lim_{x \to -\infty} f(x) = +\infty$	$\lim_{x\to +\infty} f(x) = 3$		

Ejercicio 3: Representa gráficamente una función que cumpla las siguientes condiciones:

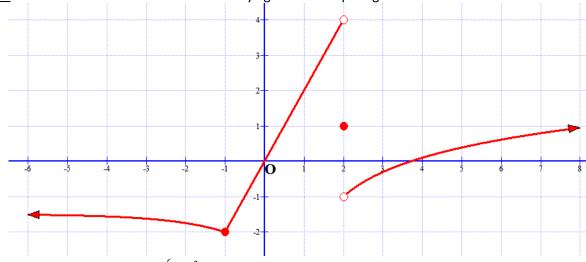
Dom(f) = R	$\lim_{x \to +\infty} f(x) = 2$	$\lim_{x \to 0} f(x) = 3$	f es par
$\lim_{x \to 2^{-}} f(x) = 3$	$\lim_{x \to 2^+} f(x) = 1$		

Ejercicio 4: Calcula los siguientes límites:

a $\lim_{x\to 0} 2$	Sol: 2	b $\lim_{x \to +\infty} \frac{3}{x^{12}}$ Sol: 0
$c \lim_{x \to -\infty} \frac{x}{6 + x - x^2}$	Sol:0	d $\lim_{x \to +\infty} (5x^2 - x + 1)$ Sol: $+\infty$
$e \lim_{x \to +\infty} \frac{-2x^3}{5x^3 - 3x + 8}$	Sol:-2/5	f $\lim_{x \to -\infty} \frac{3x^4 - x^3 + x - 9}{x^3 - 3}$ Sol: $-\infty$


$g \lim_{x \to +\infty} \frac{\sqrt{x^2 + 7}}{2x}$	Sol: 1/2	$h \lim_{x \to +\infty} \frac{\sqrt{x+1}}{\sqrt{x}}$	Sol:1
i $\lim_{x \to +\infty} \frac{\sqrt{x^5 + 1}}{\sqrt{x^2 + 2} - 4}$	Sol: $+\infty$	$\text{j} \lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x^2 + 1}$	Sol: 0
k $\lim_{x \to 5} \left(\sqrt[3]{x^2 + 2} - x \right)$	Sol:-2	1 $\lim_{x \to 1} \frac{x^3 - 6x^2 + 5x}{x^4 - x^3 + x - 1}$	Sol:-2
m $\lim_{x \to -3} \frac{(x+1)^3}{x+3}$	Sol:∞	n $\lim_{x \to 0} \frac{x^3 - 6}{x^2}$	Sol: −∞
$\tilde{n}\lim_{x\to 1} \frac{x^3 - 1}{x^3 + 2x^2 - 3x}$	Sol: 3/4	o $\lim_{x \to -1} \frac{x^4 - 1}{x^3 + 1}$	Sol: -4/3
$p\lim_{x\to 0}\frac{\sqrt{1-x}-1}{2x}$	Sol: -1/4	$q\lim_{x\to 3} \frac{\sqrt{x} - \sqrt{3}}{2x - 6}$	Sol: $\frac{1}{4\sqrt{3}}$
r $\lim_{x \to 1^{-}} \frac{x^2 + 1}{x - 1}$	Sol: $-\infty$	s $\lim_{x \to 2} \frac{x^2 - 2x}{\sqrt{x + 2} - 2}$	Sol: 8
$t\lim_{x\to+\infty} \left(\sqrt{x^2+3}-x\right)$	Sol : 0	u $\lim_{x \to +\infty} \left[\frac{x^2}{x+2} - \frac{x^3 - 1}{x^2 + 2} \right]$	Sol : -2
$\text{v } \lim_{x \to +\infty} \frac{x}{x - \sqrt{x^2 + 3x}}$	Sol : −∞	$x \lim_{x \to +\infty} \frac{\sqrt[5]{3x^2 - x + 1}}{\sqrt{4x - 1}}$	Sol : -0
y $\lim_{x \to -3} \frac{x^3 + 5x^2 + 3x - 9}{x^3 + 7x^2 + 15x + 9}$	Sol : 2	$z\lim_{x\to 1}\frac{x- x }{2x}$	Sol :0

Ejercicio 5: Calcula los siguientes límites:


$a\lim_{x\to 1}\frac{3x-1}{1-x}$	Sol: ∞	$b\lim_{x\to +\infty} \frac{3^x+1}{x^3-6}$	Sol: +∞
$c\lim_{x\to 0}\frac{\sqrt{2x}-x}{x}$	Sol: +∞ (sólo se puede hacer por la derecha)	d $\lim_{x \to +\infty} \left(\frac{3x^2 - 1}{5x^2 + x} \right)^{x^2 - 6x}$	Sol: 0
$e\lim_{x\to-\infty}\left(\frac{2x^3}{x+2}-2x\right)$	Sol: +∞	$ \lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 - 1} \right) $	Sol: 1
g $\lim_{x \to 2} \frac{x^3 - 8}{2 - x}$	Sol : -12	$h\lim_{x\to+\infty} \left(\frac{3x-1}{3x+1}\right)^{2x}$	Sol: $e^{-\frac{4}{3}}$

i: $\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + x} \right)^{x^2 - 6x}$	Sol : 0	$j: \lim_{x \to +\infty} \left(\frac{\sqrt{x} - 2}{\sqrt{x} + 2} \right)^{-\sqrt{x}}$	$Sol: e^4$
k: $\lim_{x \to 2} \left(\frac{x^2 + x}{4x - 2} \right)^{\frac{1}{x - 2}}$	Sol: $e^{\frac{1}{6}}$		

Ejercicio 6: Estudia la continuidad de la función cuya gráfica es la que sigue:

Ejercicio 7: Estudia la continuidad de la función cuya gráfica es la que sigue:

 $f(x) = \begin{cases} -x^2 + 3 & si \quad x < 2 \\ x + 1 & si \quad 2 \le x < 4 \\ 5 & si \quad x \ge 4 \end{cases}$ Estudia la continuidad y represéntala gráficamente.

Ejercicio 9: Estudia la continuidad de la función indicando, en su caso, los tipos de discontinuidad que presenta:

$$f(x) = \begin{cases} 1 - x^2 & -2 \le x < 1 \\ 3 & x = 1 \\ x - 1 & 1 < x \le 5 \\ 2^{x - 4} & x > 5 \end{cases}$$

Ejercicio 10: Calcula el valor de k para que la siguiente función sea continua en \Re : $f(x) = \begin{cases} x^2 - 1 & si & x < 5 \\ 4x + k & si & x \ge 5 \end{cases}$

$$f(x) = \begin{cases} x^2 - 1 & si \quad x < 5 \\ 4x + k & si \quad x \ge 5 \end{cases}$$

Ejercicio 11: Calcula los valores de a y b para que la siguiente función sea continua:

$$f(x) = \begin{cases} ax^2 - 2x & \text{si} \quad x \le 1\\ 4x^2 + ax + b & \text{si} \quad 1 \le x < 2\\ 3x + b & \text{si} \quad x \ge 2 \end{cases}$$

Ejercicio 12: Dada la función:
$$f(x) = \begin{cases} 1 - x & si & x \le -3 \\ x^2 + 2x - 3 & si & -3 < x < 1 \\ \log_2 x & si & x > 1 \end{cases}$$

- a) Representarla gráficamente
- b) Señala su dominio y su recorrido o imagen.
- c) Estudia su continuidad en x = -3 y en x = 1